
On the Dynamic Manipulation of Classes of Service for
XML Web Services

Vladimir Tosic, Wei Ma, Bernard Pagurek, Babak Esfandiari

Department of Systems and Computer Engineering, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

{vladimir, weima, bernie, babak} @ sce.carleton.ca

Abstract. Classes of service are a mechanism for differentiation of service and
quality of service (QoS) that incurs less overhead than custom-made Service
Level Agreements (SLAs), user profiles, and other alternatives. For their for-
mal representation for XML (Extensible Markup Language) Web Services, we
have developed the Web Service Offerings Language (WSOL). A service of-
fering in WSOL is a formal description of one class of service of a Web Serv-
ice. It contains various constraints (functional, QoS, access rights), manage-
ment statements (e.g., prices, monetary penalties, and management responsi-
bilities), and reusability constructs (determining static relationships between
service offerings). One Web Service can be associated with multiple service
offerings. Dynamic (i.e., run-time) relationships between service offerings are
specified outside WSOL service offerings, in a special format. In addition to
the WSOL language, we are developing the Web Service Offerings Infrastruc-
ture (WSOI) that addresses monitoring and accounting of WSOL service offer-
ings and dynamic adaptation of Web Service compositions using manipulation
of service offerings. Five mechanisms for the dynamic manipulation of service
offerings are explored: switching (initiated by the consumer or the provider
Web Service), deactivation, reactivation, deletion, and creation of service of-
ferings. WSOL relationships between service offerings are particularly useful
for these mechanisms. From analytical studies and practical experiments with
dynamic adaptation scenarios involving WSOL and alternative approaches, we
conclude that manipulation of classes of service is simpler and faster than re-
composition of Web Services and re-negotiation of SLAs. While it has limita-
tions, it can be a useful additional lightweight dynamic adaptation approach.

1 Introduction

An XML (Extensible Markup Language) Web Service is “a software application
identified by a URI (Uniform Resource Identifier), whose interfaces and binding are
capable of being defined, described and discovered by XML artifacts and supports
direct interactions with other software applications using XML based messages via
Internet-based protocols” [1]. Hereafter, we use the term ‘Web Service’ as a synonym
for the term ‘XML Web Service’.

The three main Web Service technologies are the SOAP protocol for XML mes-
saging, the WSDL (Web Service Description Language) language, and the UDDI
(Universal Description, Discovery, and Integration) directory. The goal of Web Serv-
ice technologies is a standard platform, based on XML, for distributed application-
to-application (A2A) and business-to-business (B2B) integration.

A Web Service can provide several ports. Each port implements a particular port
type, which is collection of one or more operations. Operations can be input-output,
input-only, output-only, or output-input. Consequently, they contain input, output,
and/or fault messages. Different protocols for messaging are supported, most notably
SOAP. Communication between Web Services can be synchronous or asynchronous;
based on Remote Procedure Calls (RPCs) using XML or on the exchange of XML
documents. While Web Services can be used for providing services to human end
users, their true power is leveraged through compositions (orchestrations, cho-
reographies, flows, networks) of Web Services. Hereafter, by a consumer (requester,
client) of a Web Service A we assume another Web Service that is composed with A
and collaborates with it, not an end user (human) using A. One Web Service can
serve many different consumers, possibly at the same time. On the other hand, we
refer to A as the provider (supplier) Web Service. The composed Web Services can
be distributed over the network, run on different platforms, implemented in different
programming languages, and provided by different vendors.

At the start of our research— when SOAP, WSDL, and UDDI just appeared— we
have noted the need for significantly extending Web Service technologies with better
support for the specification of management information and for Web Service Man-
agement (WSM) and Web Service Composition Management (WSCM). For exam-
ple, WSDL defines specification of functionality (messages, operations, port types),
access methods, and location of Web Services. However, it does not support specifi-
cation of classes of service, various constraints (guarantees or requirements), man-
agement statements, Service Level Agreements (SLAs) and other contracts between
Web Services. Explicit, precise, and unambiguous specification of such information
is crucial for management activities [2, 3, 4]. Further, appropriate infrastructures for
monitoring of Web Service and, particularly, for dynamic adaptation of Web Service
compositions were missing.

We were particularly intrigued that the very important concept of classes of serv-
ice was missing from Web Service technologies. In certain circumstances, discussed
in the paper, it can be useful for a Web Service to offer several different classes of
service to consumers. In addition, dynamic (i.e., run-time) manipulation of classes of
service can be used for both Web Service Management and Web Service Composition
Management. Consequently, the focus of our research is enabling Web Services to
provide and specify multiple classes of service and to perform management activities,
such as monitoring and dynamic adaptation, with these classes of service.

For the formal specification of classes of service, various types of constraint and
management statements, we have developed the Web Service Offerings Language
(WSOL), compatible with and complementary to WSDL. For the monitoring of
classes of service specified in WSOL and for the manipulation of classes of service,
we have developed the Web Service Offerings Infrastructure (WSOI). In this

paper, we present our recent results related to the dynamic adaptation mechanisms
based on the manipulation of WSOL classes of service. We have designed algorithms
and protocols, designed and partially implemented appropriate management infra-
structure support, and compared our dynamic adaptation mechanisms with alterna-
tives using analytical studies and practical experiments. We find that that manipula-
tion of classes of service using WSOL and WSOI is simpler and faster than the re-
composition of Web Services and the re-negotiation of SLAs. While it has limita-
tions, it can be a useful additional lightweight dynamic adaptation approach.

Recently, important results on the management of Web Services and Web Service
compositions have been achieved in parallel with our work on WSOL and WSOI.
For the XML specification of custom-made SLAs between Web Services, HP has
developed the Web Service Management Language (WSML) [3, 5], while IBM has
developed the Web Service Level Agreements (WSLA) language [4, 6]. Both lan-
guages are accompanied by appropriate management infrastructures [5, 6]. One of
the main distinctive characteristics of our research compared to WSML and WSLA
is that WSOL is based on the concept of a class of service, instead of the more de-
manding concept of a custom-made SLA. In addition, our WSOI contains explicit
support for the dynamic adaptation of Web Service compositions using manipulation
of classes of service.

This paper is organized as follows. In this section, we have introduced our re-
search by defining background terminology, summarizing motivation, stating the
paper topic and thesis, and differentiating from key related work. In the next section,
we discuss the benefits of classes of service for Web Services and define the concept
of a service offering. We give a brief overview of constructs in WSOL in Section 3.
In Section 4, we describe how WSOI supports monitoring of classes of service speci-
fied in WSOL. In particular, we explain how we have extended the Apache Axis
open-source SOAP engine with WSOI. Sections 5, 6, and 7 represent the core of the
paper. In Section 5, we discuss five mechanisms for the dynamic manipulation of
classes of service: switching (initiated by the consumer or the provider Web Service),
deactivation, reactivation, deletion, and creation of service offerings. WSOL and
WSOI support for these dynamic adaptation mechanisms is examined in Section 6.
WSOL support is the specification of static and dynamic relationships between
classes of service, while WSOI support includes special data structures, implementa-
tions of algorithms and protocols, and definitions of special management port types.
An important part of our work is comparison of our dynamic adaptation mechanisms
with alternatives, such as re-composition of Web Services. In Section 7, we explain
how we perform such comparisons analytically and using experiments with prototype
implementations. Section 8 contains an overview of some recent related works. We
summarize the conclusions and directions for future work in Section 9.

2 Classes of Service for XML Web Services

In our work, by a ‘class of service‘ we mean a discrete variation of the complete
service and quality of service (QoS) provided by one Web Service. We discuss classes

Fig. 1. Multiple Classes of Service for One Web Service

WSDL description of a Web Service

class of service 1 class of service 2 …

of service at the level of Web Services, not at the level of particular constraints or
guarantees (e.g., response time) that are part of the overall service and QoS.

Classes of service of one Web Service refer to the same WSDL description (see
Figure 1), but differ in constraints and management statements. For example, they
can differ in usage privileges, service priorities, response times guaranteed to con-
sumers, verbosity of response information, etc. The concept of classes of service also
supports different capabilities, rights, and needs of potential consumers of the Web
Service, including the power and type of devices on which they execute. Further,
different classes of service may imply different utilization of the underlying hardware
and software resources and, consequently, have different prices. Additionally, differ-
ent classes of service can be used for different payment models, such as pay-per-use
and subscription-based. To summarize, a Web Service with multiple classes of serv-
ice can be used in different circumstances and by a wider range of consumers. There-
fore, providing multiple classes of service enables the broadening of the market seg-
ment of a Web Service. It also enables the Web Service to better balance limited
underlying resources and the price/performance ratio.

Providing classes of services is not the only possible way to customize constraints
and management statements that a Web Service offers to its consumers. There are
various alternatives, including custom-made Service Level Agreements (SLAs), user
profiles, parameterization, and separate ports. However, the practice of telecommu-
nication service provisioning shows that classes of service have relatively low over-
head and complexity of management. One the goals of our research was to study
mechanisms that have lower run-time overhead of management activities for Web
Services [7, 8]. We wanted to accommodate relatively simple consumer Web Serv-
ices and to support reduction of management overhead for provider Web Services.
We did not assume that Web Services are provided by enterprises that already have
complex management frameworks and/or application servers supporting manage-
ment. Consequently, we have decided to concentrate our research on classes of serv-
ice. We are aware that they are not a complete replacement for all alternatives and
that even the overhead of classes of service can be too high for some circumstances.
However, even if some of the alternative approaches were more appropriate for par-
ticular circumstances, classes of service could be a useful addition and complement.

In our research, we use the term ‘service offering’ to refer to the formal represen-
tation of a single class of service of one Web Service. Consequently, a service offer-
ing is a combination of formal representations of various constraints and manage-
ment statements that determine the corresponding class of service. It can also be
viewed as one simple contract or one SLA between the supplier Web Service, the
consumer, and eventual management third parties. Hereafter, we will almost exclu-

sively use the term ‘service offering’, although in some cases we could have also
used the term ‘class of service of a Web Service’.

We specify service offerings separately from the WSDL description of the Web
Service. While some constraints (particularly functional) rarely change during run-
time, other constraints (particularly QoS constraints and prices/penalties) can be
changed during run-time to better fit the execution circumstances. The separation of
service offerings from WSDL descriptions enables that, if needed, service offerings
can be deactivated, reactivated, created, or deleted dynamically without any modifi-
cation of the underlying WSDL file.

In our work, consumers open sessions with provider Web Services. Sessions en-
able grouping of management information, e.g., for the measurement or calculation
of periodic QoS metrics and the evaluation of QoS constraints. A Web Service can
suggest different service offerings to different classes of consumer and maybe even
several service offerings to the same consumer. Inside one session, only one service
offering is used at a time. However, the consumer or the provider can initiate a
change of service offerings, called switching, and other dynamic adaptation mecha-
nisms discussed later in the paper. Some consumers might be allowed to open multi-
ple parallel sessions with the same provider Web Service.

3 The Web Service Offerings Language (WSOL)

The Web Service Offerings Language (WSOL) is our language for the formal
specification of classes of service, various constraints, and management statements
for Web Services. The syntax of WSOL is defined using XML Schema, in a way
compatible with WSDL 1.1. A WSOL file references one or more WSDL files and
adds information that is not present in WSDL files.

The main categories of constructs in WSOL are:
1. service offerings,
2. constraints,
3. (management) statements,
4. reusability constructs, and
5. service offerings dynamic relationships.
We summarize the main characteristics of these categories of constructs in this sec-
tion. An overview of WSOL can be found in [9, 7], while precise syntax, illustrative
examples, and detailed discussions are given in [10].

As already stated, a WSOL service offering is the formal representation of one
class of service and contains formal definitions of various constraints and manage-
ment statements, as well as different reusability constructs. Definitions of WSOL
service offerings can be long and complex. Therefore, in Figure 2 we have shown
only some example parts of the definition of one service offering, SO1. This service
offering contains the QoS constraint QoScons2 and the management responsibility
statement MangResp1. The other constraints and statements in this service offering
are left out for brevity.

<wsol:serviceOffering name = ”SO1” service = ”buyStock:
buyStockService” accountingParty = ”WSOL-SUPPLIERWS” >
 <wsol:constraint name = ”QoScons2” service = ”WSOL-ANY”
portOrPortType = ”WSOL-EVERY” operation = ”WSOL-EVERY” >
 <expressionSchema:booleanExpression>
 <expressionSchema:arithmeticExpression>
 <expressionSchema:QoSmetric metricType=
“QoSMetricOntology:ResponseTime ” service = ”WSOL-ANY”
portOrPortType = ”WSOL-ANY” operation = ”WSOL-ANY”
measuredBy = ”WSOL_INTERNAL” />
 </expressionSchema:arithmeticExpression>
 <expressionSchema:arithmeticComparator type = ”<” />
 <expressionSchema:arithmeticExpression>
 <wsol:numberWithUnitConstant>
 <wsol:value>0.3</wsol:value>
 <wsol:unit type = ”QoSMeasOntology:second ” />
 </wsol:numberWithUnitConstant>
 </expressionSchema:arithmeticExpression>
 </expressionSchema:booleanExpression>
 </wsol:constraint>
 …
 <wsol:managementResponsibility name = ”MangResp1” >
 <wsol:supplierResponsibility scope = ”tns:AccRght1” />
 <wsol:consumerResponsibility scope = ”tns:Precond3” />
 <wsol:independentResponsibility scope = ”tns:QoScons2”
entity = ”http://www.someThirdParty.com ” />
 </wsol:managementResponsibility>
</wsol:serviceOffering>

Fig. 2. Parts of an Example WSOL Service Offering

Every WSOL constraint contains a Boolean expression that states some condition
to be evaluated. Boolean expressions in constraints can also contain arithmetic,
date/time/duration, and some simple string expressions. They can also contain calls
to operations, which can be implemented by the provider Web Service, the party
performing the evaluation of the constraint, or some external entity. The constraints
can be evaluated before and/or after invocation of operations or periodically, at par-
ticular date/time instances. WSOL supports the formal specification of functional
constraints, quality of service (QoS) constraints, and access rights. Functional con-
straints (pre-, post-, and future-conditions [7]) describe valid inputs and results of
operations. QoS constraints describe properties such as performance, reliability, and
availability. WSOL QoS constraints contain specifications of what QoS metrics are
monitored, as well as when and by what entity. However, definition of QoS metrics
(i.e., how they are measured or computed) is done in external reusable and extensible
ontologies [11]. QoS constraints usually describe QoS guarantees. However, QoS
constraints for output-input operations and some periodic QoS constraints can be
used for the specification of QoS requirements. Access rights specify conditions
under which any consumer using the current service offering has the right to invoke
a particular operation. They are used in WSOL for differentiation of service. WSOL

can be extended with the formal specification of additional types of constraint using
the XML Schema mechanisms.

A WSOL statement is any construct, other than a constraint, that states some im-
portant management information about the represented class of service. WSOL en-
ables the formal specification of statements about management responsibility, sub-
scription prices, pay-per-use prices, and monetary penalties to be paid if constraints
are not met. WSOL can be extended with the formal specification of additional types
of management statement (e.g., policies) using the XML Schema mechanisms.

Apart from definitions of constraints and management statements, WSOL service
offerings can contain various reusability constructs. They are discussed in more
detail in [12]. Most importantly, service offerings can be defined as extensions of
other service offerings. The extending service offering contains all WSOL items
(constraints, statements, reusability constructs) as the extended service offerings, as
well as some additional WSOL items. Further, several constraints and/or statements
can be gathered into a WSOL constraint group (CG). Then, constraints, statements,
and constraint groups already defined elsewhere can be simply included in another
service offering. Next, constraint group templates (CGTs) are parameterized con-
straint groups. They can be instantiated many times with different parameter values.
These and other WSOL reusability constructs determine static relationships be-
tween WSOL service offerings. These relationships show similarities and differ-
ences between service offerings and do not change during run-time.

In addition, WSOL enables specification of dynamic relationships between service
offerings. They can change during run-time, e.g., after dynamic creation of a new
service offering. We use the term ‘service offerings dynamic relationship (SODR)’
for such a relationship. One service offerings dynamic relationship states what class
of service is an appropriate replacement if particular constraints from some other
class of service cannot be met. Such relationships should not be built into definitions
of service offerings, to avoid frequent modification of these definitions. Service offer-
ings dynamic relationships are specified in a special XML format outside definitions
of service offerings (often in separate files) to make their evolution independent from
the evolution of other characteristics of a service offering. This format was discussed
in [9, 10]. Static and, particularly, dynamic relationships between service offerings
are very useful for the mechanisms for the manipulation of service offerings dis-
cussed later in the paper. In addition, they enable easier selection and negotiation of
service offerings.

To verify the WSOL syntax, we have developed a WSOL parser called ‘Premier’
[10]. Its implementation is based on the Apache Xerces XML Java parser. This
parser produces a DOM (Document Object Model) tree representation of WSOL files
and reports eventual syntax errors and some semantic errors. We have also designed
Java classes and XML description files that will be the results of the compilation of
WSOL files. We have not yet finished a code generator that creates the designed Java
classes and XML description files from DOM trees produced by our WSOL parser. A
prototype WSOL compiler would then be a combination of the ‘Premier’ WSOL
parser and this code generator.

4 Monitoring of WSOL Service Offerings

We are researching two groups of management applications of WSOL: Web Service
Management (WSM) and Web Service Composition Management (WSCM) [9]. We
concentrate our research of Web Service Management on monitoring of WSOL serv-
ice offerings. This includes the evaluation of WSOL constraints, metering and calcu-
lation of used QoS metrics, and accounting of executed operations and evaluated
WSOL constraints. On the other hand, in the Web Service Composition Manage-
ment (WSCM) area we are primarily interested in dynamic adaptation mechanisms
based on the manipulation of WSOL service offerings. To support both Web Service
Management and Web Service Composition Management using WSOL, we are de-
veloping the Web Service Offerings Infrastructure (WSOI). WSOI is the man-
agement infrastructure for WSOL. In this section, we summarize the monitoring of
WSOL service offerings and how WSOI supports them. In the following sections, we
discuss the dynamic adaptation mechanisms based on the manipulation of WSOL
service offerings, how WSOI supports them, and how they relate to other possible
mechanisms for dynamic adaptation of Web Services and Web Service compositions.

Different parties can be involved in the monitoring of a WSOL service offering:
the provider, the consumer, and management third parties – software modules
(e.g., Web Services) independent from the provider and the consumer [9]. Manage-
ment third parties [4] can be used to perform monitoring and management actions
that cannot be performed by the provider or the consumer. They can also be used
when the consumer and the supplier do not trust each other, but both trust some
independent and well-known Web Service Management entity. Some management
third parties can be specialized for the evaluation of WSOL constraints, for the me-
tering and calculation of used QoS metrics (or only particular groups of QoS met-
rics), or for the accounting and billing activities. Other management third parties
might be used for a combination of these activities. While management third parties
are important to achieve manageability, flexibility, and trust, they introduce addi-
tional complexity, overhead, and delays. These two opposite sets of issues can be
balanced by concentrating monitoring and management actions into one or few man-
agement third parties.

For one service offering, only one party (a third party, the provider, or, in rare
cases, the consumer) acts as a special management party – the accounting party.
This party performs all accounting and billing activities for this service offering.

We are primarily researching cases where management third parties act as SOAP
intermediaries. In other words, these management third parties intercept SOAP
messages between the consumer and the provider, perform their management tasks,
and piggyback their management results into SOAP headers [9]. WSOL also sup-
ports management parties that act as probes. Such management parties can send
their results to other management parties using some agreed-upon management
operations, which will be discussed later in the paper. Alternatively, these manage-
ment parties can provide their results through operations that are invoked in appro-
priate WSOL constraints, using the WSOL external operation call mechanism.

The part of WSOI that performs monitoring of WSOL constraints is based on ex-
tensions of Apache Axis (Apache eXtensible Interaction System) [13], a popular
open-source SOAP engine implemented in Java. A SOAP engine is an application
that receives, processes, and sends SOAP messages. We run Axis using the popular
Apache Tomcat open-source application server. Axis has a modular, flexible, and
extensible architecture based on configurable chains of pluggable SOAP message
processing components, called handlers. An Axis handler can alter the processed
SOAP message, e.g., add/remove headers. It can also perform some other message
processing, e.g., measurement of QoS metrics or evaluation of constraints. An Axis
chain is an ordered, pipelined collection of handlers. Since the Chain class is a sub-
class of the Handler class, every Axis chain is also a handler. Handlers exchange
information through the message context data structure. It contains information
about the request message, the response message, and a bag of properties. The mes-
sage context properties determine how handlers process the message and can be
modified by handlers.

The modular, flexible, and extensible Axis architecture enables implementing the
support for monitoring of WSOL service offerings as a set of additional handlers and
handler chains plugged into Axis. In WSOI, specialized Axis handlers perform
WSOL-related metering and calculation of QoS metrics, evaluation of constraints,
and accounting activities. Hereafter, we refer to these handlers as ‘WSOI-specific
handlers’. We have designed these handlers so that a WSOL compiler can generate
them automatically from WSOL files. However, since our prototype WSOL compiler
is not yet fully implemented, we have manually implemented some of these handlers
in our WSOI prototype.

We have studied several ways to design WSOI-specific handlers that evaluate
WSOL constraints. One possible approach is that WSOL compiler creates generic
expression-evaluation handlers that can be used for many different WSOL con-
straints. However, to reduce run-time overhead, we have chosen that that a WSOL
compiler generates a specialized handler for every WSOL constraint, except for
constraints that are results of instantiation of a WSOL constraint group template
(CGT). For every constraint that is specified inside a WSOL constraint group tem-
plate, a WSOL compiler generates a parameterized WSOI-specific handler class. It
also creates a separate object of this handler class whenever the constraint group
template is instantiated with some concrete parameter values.

There are also several possible designs for WSOI-specific handlers that measure
or calculate QoS metrics. We have adopted that a WSOL compiler generates these
handlers from ontological definitions of QoS metrics [11]. However, several applica-
tion management instrumentation technologies, such as the Java Management Ex-
tensions (JMX) and the Desktop Management Interface (DMI), already exist. If such
an instrumentation technology is already supported by some management party and
its results can be related to QoS metrics used in WSOL service offerings, a WSOL
compiler could generate appropriate calls to this infrastructure. We have left this
issue for future research.

A WSOL compiler also generates special XML files describing what WSOI-
specific handlers are used for a particular context (i.e., a particular operation, service

Fig. 3. Provider-side Axis SOAP Engine with WSOI

req.

res.

op.
call

Axis SOAP Engine with WSOI

Pr

… SH

SH

SOI

SOO …

WSOIChain

RTB

RTS

AI

AO QCE

offering, and management party) and in what order. While a WSOL compiler might
use a limited number of precedence rules for determining the order of the handlers, it
seems that there is a possibility of errors. Therefore, we allow human Web Service
administrators to generate or modify these XML files. We have developed the format
for these XML files and the corresponding data structure inside WSOI. However, in
our current prototype implementation of WSOI we have manually filed internal
WSOI data structures with some data, while their loading from XML files is left for
future work. We have also left the distribution of relevant results of a WSOL com-
piler (i.e., classes for WSOI-specific handlers and XML descriptions of how they are
used) to management third parties for future research. Currently, we perform such
distribution manually.

We transport WSOL-related information, such as results of measurement or calcu-
lation of QoS metrics and evaluation of constraints and price/penalty statements,
between WSOI-specific handlers in special properties of the message context. As
already mentioned, for the transport of WSOL-related information between different
management parties we use SOAP headers. Special WSOI-specific handlers perform
translations between these two formats. In addition to message context properties,
WSOI also uses some additional data structures (often implemented as hashtables)
for storing additional management information. For example, these data structures
store what service offering is used in which session, what service offerings are active
or deactivated, what is the history of unsatisfied and satisfied constraints, and what is
the billing balance for a particular session. Many of these data structures are used for
the dynamic adaptation mechanisms described in the following sections.

Let us now illustrate how WSOI-specific handlers are used for the monitoring of
WSOL service offerings. In Figure 3, we have shown an example configuration of
handlers inside the provider-side Axis SOAP engine extended with WSOI. In this
example, the provider Web Service measures response time, evaluates a QoS con-
straint limiting this response time, and performs accounting. At the beginning of
processing of an input (request) message, some Axis handlers standard for all Web
Services are executed. These handlers are shown in Figure 3 as ‘… ’. For every Web
Service that supports WSOL, the WSOI-specific handlers WSOISessionHandler
(SH), ServiceOfferingInput (SOI)/ServiceOfferingOutput (SOO), and the chain
WSOIChain are executed. For processing input messages, WSOISessionHandler
reads the session information from a SOAP header and writes it into the message

context. Similarly, ServiceOfferingInput reads WSOL-related information from
SOAP headers and writes it into appropriate message context properties.

The main part of an Axis engine extended with WSOI is WSOIChain. It contains
code that examines what is the operation invoked and what is the service offering
used and dynamically constructs the chain of appropriate WSOI-specific handlers.
For these decisions, WSOIChain uses internal data structures that are loaded from
XML files generated by a WSOL compiler. In Figure 3, the first handler in WSOI-
Chain for input message is AccountingInput (AI), which records the request mes-
sage. Then, the ResponseTimeBegin (RTB) handler stores into message context the
start time for measuring response time. After this, the standard Axis handler, Pro-
vider (Pr), is executed. It is outside WSOIChain. It dispatches the call to the Java
object implementing the requested operation of the Web Service. This Java object
returns its results back to the Provider handler. After Provider, handlers in the WSO-
IChain process the output (i.e., response) message. First, the handler Response Time
Stop (RTS) stores into message context the stop time for measuring response time, as
well as the difference between this stop time and the start time stored by RTB. Next,
the QoS constraint limiting response time is evaluated in the handler QoS Constraint
Evaluation (QCE). This handler stores its results into the message context. Finally,
the Accounting Output (AO) handler uses the information from the message context
to calculate prices and eventual penalties to be paid. This information is also stored
into the message context. After WSOIChain, ServiceOfferingOutput (SOO) and
WSOISessionHandler (SH) process the output message. ServiceOfferingOutput per-
forms the conversion in the opposite direction from ServiceOfferingInput. That is, it
reads WSOL-related information from message context properties and writes into
SOAP headers. For processing output messages, WSOISessionHandler reads the
session information from message context and writes it into a SOAP header. Next,
Axis handlers standard for all Web Services are executed.

While the evaluation of periodic constraints differs from the example illustrated in
Figure 3, it is also supported by WSOI. Timer, a special active object in WSOI, initi-
ates evaluation of periodic constraints and measurement or calculation of periodic
QoS metrics. It invokes the WSOIChain object, which creates a chain of appropriate
handlers and executes them. The results of such an evaluation, measurement, or
calculation can be stored locally for future processing. They can also be reported to
other management parties in a special notification SOAP message.

The described monitoring of WSOL service offerings inside an Axis engine ex-
tended with WSOI incurs some run-time overhead. We have performed some ex-
periments to check this overhead. In particular, we have measured time delays and
Java Virtual Machine (JVM) memory usage for the same Web Services running Axis
with and without WSOI. The memory overhead introduced by WSOI was about 5%
of the total memory consumed by Tomcat, Axis, and Java implementations of the
involved Web Services. The response time increased about 25%. In our opinion, this
is an acceptable overhead.

5 Mechanisms for the Dynamic Manipulation of Service Offerings

Another application area of WSOL is the management and dynamic adaptation of
Web Service compositions. We are particularly interested in dynamic adaptation
without breaking an existing relationship between a provider Web service and its
consumer. To achieve this goal, we are exploring management and dynamic adapta-
tion mechanisms that are based on the manipulation of classes of service, particularly
WSOL service offerings. The five main mechanisms that we study are switching
between service offerings, deactivation, reactivation, and deletion of existing service
offerings, and creation of new service offerings. These mechanisms can be used
between operation invocations that are part of the same session.

Dynamic switching between service offerings is changing which service offer-
ing a consumer uses. Either a consumer or a provider Web Service can initiate it. In
the latter case, the consumer is asked for confirmation. The consumer can initiate it
to dynamically adapt the service and/or QoS it receives without searching for another
Web service. The provider can initiate it to gracefully upgrade or degrade its service
and/or QoS in case of changes. For example, when a financial analysis Web Service
is a consumer of a stock notification Web Service, switching between service offer-
ings can be initiated by either of them to adapt to a turbulent stock market.

Since switching between service offerings is the basic dynamic adaptation mecha-
nism in our research, let us illustrate it with an example. We will observe a con-
sumer-initiated switching scenario, shown in Figure 4, in which one independent
third party, denoted A, performs all management and accounting activities. The
provider Web Service P has at least two service offerings SO1 and SO2. At the be-
ginning of the observation, the consumer C uses SO1. However, C also knows about
other active service offerings of P that it can use, particularly SO2. At some time, C
decides that it would be better if it used SO2 instead of SO1. Therefore, C sends the
accounting party A the ‘switchSO’ message containing the name of SO2 (step 1 in
Fig. 4). After the receipt of this message, A blocks and queues further requests from
C to P in the given session (step 2). However, the requests that were received by A
before the switching request are processed using SO1. When A finishes processing of
all these requests, it sends P the ‘switchSO’ message containing the name of SO2
(step 3). P checks whether the switching is possible, e.g., whether SO2 is still active
and C has the right to use it (step 4). Let us assume that the switching is possible, so
P sends A the ‘switchingOK’ message (step 5). Then, P performs initialization of its
internal activities and data structures related to SO2 and finalization of activities and
data structures related to SO1 (step 6). In parallel, A also performs initialization and
finalization of its activities and data structures, after it receives the ‘switchingOK’
message from P (step 7). When everything is ready for C to use SO2, A sends C the
‘switchingOK’ message (step 8). If A has queued any requests from C, it unblocks
and processes them using SO2 (step 9). Afterwards, C uses SO2.

We have also developed solutions for more complex scenarios and for the han-
dling of special cases. For example, when more than one management third party is
involved in SO1 and/or SO2, A has to send them ‘initAndFin’ messages as part of
step 7 discussed above. Also, the provider P may reject the consumer’s request for

Fig. 4. Consumer-initiated Switching between Service Offerings

C: Consumer P: Provider A: Accounting
& Management

3. switchSO

2. block

7.initAndFin

9. unblock

4. check

6. initAndFin

1. switchSO

8. switchingOK

5. switchingOK

switching between service offerings, but suggest an alternative replacement service
offering. In addition, when the accounting party for SO2 is different from the ac-
counting party for SO1, additional steps are needed to initialize the new accounting
party and to forward it the requests queued at the old accounting party. On the other
hand, when the provider Web Service performs all management and accounting
activities, switching between service offerings becomes simpler.

Deactivation and reactivation of service offerings is used by a provider Web
service when changes in operational circumstances affect what service offerings it
can provide to its consumers. Some service offerings cannot be used in all circum-
stances. For example, it is sometimes impossible to achieve high QoS or it is danger-
ous to provide service offerings with low security. An example of changed circum-
stances is unexpected fluctuation in the QoS provided by Web Services used by the
provider. Another example is some temporary disturbance of the communication
between involved parties, e.g., due to mobility. This dynamic adaptation mechanism
supports both graceful degradation and seamless service upgrades and expansions.

When a change of circumstances occurs, a provider Web Service can dynamically
deactivate service offerings that cannot be supported in the new circumstances. The
essential issue is what to do with consumers using the deactivated offering. We have
developed support for handling such cases. In principle, the provider initiates switch-
ing of service offerings (e.g., to a service offering with less QoS, or with higher QoS
and price) and asks the affected consumers for confirmation. Consumers can accept
the suggested replacement service offering, initiate switching to another replacement
service offering they prefer, or close the session with the provider. In many situations
(e.g., when trust is important), it is better for an affected consumer to accept the

replacement service offering from the same provider than to search for another pro-
vider Web Service. If there is no appropriate replacement service offering to which
consumers can be switched, the provider can initiate creation of new service offer-
ings. When this is also not possible, other approaches to dynamic adaptation, e.g.,
re-composition of Web Services, have to be used.

The deactivated service offering may be reactivated at a later time after another
change of circumstances, after which the provider suggests to the affected consumers
switching to their original service offerings. This can help in achieving, as much as
possible, the originally intended level of service and QoS.

If the change of circumstances is permanent, so the probability of future
reactivation of a deactivated service offering is zero or very low, the provider Web
Service can decide to dynamically delete a service offering. For example, if im-
plementation of a provider Web Service is dynamically upgraded to improve per-
formance, some of its service offerings with lower QoS might become redundant and
can be deleted. Another example is when a management third party used in some
service offering goes out of business. Deletion permanently removes support for a
service offering. Only deactivated service offerings can be deleted.

Dynamic creation of new service offerings can be used after a change in the im-
plementation of the provider Web Service, in the Web Services that the provider
uses, in management third parties, or in the execution environment. To some limited
extent, it can also be performed on demand of important consumers. It then becomes
a substitute for negotiation of a custom-made contract or SLA between Web Services.

This dynamic adaptation mechanism is needed to enable further flexibility, cus-
tomizability, and adaptability of Web Services and Web Service compositions. While
the dynamic adaptation mechanisms discussed above handle changes that are to
some extent anticipated, the creation of new service offerings can be used for unan-
ticipated changes. Not all circumstances of run-time operation (particularly, QoS)
and not all consumer needs can be predicted in advance. In addition, Web Services
and Web Service compositions can evolve (e.g., be upgraded) dynamically. Creation
of new service offerings provides some support for evolution with minimal disruption
of the operation and for propagation of changes to co-operating Web Services. For
example, when a financial analysis Web Service uses a stock notification Web Serv-
ice and the implementation of the stock notification is dynamically upgraded, then
new service offerings of the stock notification Web Service can be created. To reflect
these changes, new service offerings of the financial analysis Web Service can also
be created. This propagates upgrade benefits from the stock notification Web Service
to consumers of the financial analysis Web Service, e.g., decision support systems.

Note that the creation of new service offerings is not the creation of new Web
Service characteristics described in WSDL files, such as operations and ports. It is
the creation of new sets of constraints (e.g., updated QoS constraints) and manage-
ment statements (e.g., updated prices and monetary penalties) for the existing WSDL
description of a Web Service. It can accompany, but not completely replace, dynamic
creation of new WSDL files, e.g., during dynamic evolution of Web Services.

Dynamic creation of new service offerings can be non-trivial and incur non-
negligible overhead. It cannot be performed arbitrarily due to various possible con-

flicts. For example, QoS constraints cannot be set arbitrarily because of the limita-
tions of used resources (including other Web Services), mutual dependencies of QoS
parameters, and other issues. Detection and resolution of such conflicts can be very
complex. Creating new service offerings might consume considerable time and re-
sources of the Web Service. Therefore, we are researching only simple and limited
creation of new service offerings as variations of existing service offerings. While we
are concentrated on provider-initiated creation of service offerings, we also leave the
possibility of consumer-initiated creation.

One possible way to dynamically create new service offerings is to use existing
WSOI-specific handlers, but in different circumstances. For example, a stock notifi-
cation Web Service might have two operations: ‘stockValue’ returns value of one
stock symbol, while ‘multipleStockValues’ returns values for an array of stock sym-
bols. Let us assume that service offering SO1 contains a response time guarantee for
‘stockValue’, but not for ‘multipleStockValues’. Then, dynamic creation of a new
service offering SO2 that contains response time guarantees for both operations is
relatively simple and straightforward. It requires only an update of the descriptions
which of these handlers are used in the given circumstances and in what order.

Another, even simpler, way to dynamically create a new service offering SO3
from SO1 is to simply strengthen the response time guarantee for ‘stockValue’, e.g.,
from ‘2 seconds’ to ‘1 second’. A WSOL compiler generates parameterized WSOI-
specific handlers from parameterized constraints defined inside WSOL constraint
group templates (CGTs). Consequently, if the response time guarantee for
‘stockValue’ is defined inside a WSOL constraint group template, then the dynamic
creation of SO3 would not even require changes to descriptions of the order of used
handlers. To enable monitoring of SO3, a change of the appropriate handler parame-
ter would be enough.

We have envisioned, but not yet developed, a Java API (Application Programming
Interface) that would enable generation of WSOL files from internal WSOI data
structures. This API would be used in the process of dynamic creation or deletion of
service offerings.

Apart from the above-mentioned dynamic adaptation mechanisms, other mecha-
nisms related to the manipulation of service offerings can be studied. An important
group of mechanisms is deactivation, reactivation, deletion, and creation of serv-
ice offerings dynamic relationships (SODRs). We are working on these mecha-
nisms primarily in the context of deactivation, reactivation, deletion, and creation of
service offerings. After a service offering is deactivated, reactivated, or deleted, the
corresponding service offerings dynamic relationships have to be deactivated, reacti-
vated, or deleted. When a new service offering is created, new service offerings dy-
namic relationships can be created, while some old ones might be deactivated or
even deleted. However, the relationship between the manipulation of service offer-
ings dynamic relationships and the manipulation of involved service offerings can be
more complex. For example, assume the stock notification Web Service provides
three service offerings and at least one service offerings dynamic relationship. The
service offerings dynamic relationship states that if service offering SO3 is deacti-
vated because the response time guarantee for the operation ‘stockValue’ cannot be

kept, then the appropriate replacement service offering is SO2. After several
deactivations (and subsequent reactivations) of SO1 due to response time guarantee
for ‘stockValue’, the provider Web Services (or some entity managing it) notices that
the vast majority of consumers prefer service offering SO1 as a replacement for SO3.
Then, the new service offerings dynamic relationship can be created and the old one
can be deactivated.

Another pair of dynamic adaptation mechanisms related to service offerings is al-
lowing and disallowing particular consumers or classes of consumer to use some
service offerings. We have left such security-related mechanisms for future research.

The presented dynamic adaptation mechanisms are primarily initiated by the pro-
vider Web Service or an external entity (software or human administrator) managing
the provider. Consumers might be allowed to initiate switching and, in exceptional
cases and only for some consumers, creation of service offerings and manipulation of
service offerings dynamic relationships. They should not be allowed access to the
other discussed dynamic adaptation mechanisms. In addition, some provider Web
Services might allow only particular consumers or classes of consumer to initiate
switching of service offerings, e.g., due to security or performance reasons. Such
restrictions could be permanent or limited to special circumstances. Furthermore, not
all of these dynamic adaptation mechanisms have to be supported by a Web Service.
For example, some Web Services might not implement creation and deletion of serv-
ice offerings and service offerings dynamic relationships. This means that in such
cases even the provider cannot initiate all dynamic adaptation mechanisms.

6 WSOL and WSOI Support for the Manipulation of Service
Offerings

Now that we have presented the dynamic adaptation mechanisms based on the ma-
nipulation of service offerings, let us discuss how WSOL and WSOI support them.

The crucial WSOL language support for these mechanisms is the specification of
various relationships, both static and dynamic, between service offerings. As men-
tioned earlier, WSOL contains a special format for the description of service offer-
ings dynamic relationships (SODRs), which can change during run-time. One such
dynamic relationship states what is the appropriate replacement service offering if
some constraints from the current service offering were not satisfied and/or cannot be
satisfied in the future. These relationships are essential for switching (particularly
provider-initiated), deactivation, and reactivation of service offerings.

On the other hand, WSOL also contains a number of reusability constructs [12]
that determine static (i.e., development-time) relationships between service offerings.
These relationships show similarities an differences between service offerings. Three
very important static relationships between service offerings are extension (single
inheritance) of service offerings, inclusion of the same constraint, and instantiation
of the same constraint group template. These and other static relationships between

service offerings and reusability constructs are very useful for the dynamic creation
of service offerings.

WSOI supports the dynamic adaptation mechanisms based on the manipulation of
service offerings in several different ways. First, it contains data structures storing
necessary information. Second, it implements algorithms and message exchange
protocols for these mechanisms. Third, it defines several special port types that con-
tain operations relevant for monitoring and manipulation of WSOL service offerings.
These data structures, algorithm and protocol implementations, and management
port types are not based on Apache Axis. However, some WSOI-specific data struc-
tures are used both for monitoring and for manipulation of WSOL service offerings
and updated by WSOI-specific Axis handlers. We summarize the WSOI support for
the manipulation of WSOL service offerings in the following paragraphs. While we
have designed and partially implemented the major elements of this infrastructure,
we are still working on its improvement and full prototype implementation.

WSOI-specific data structures store information essential for determining whether
manipulation of service offerings is necessary and what is the appropriate replace-
ment service offering. For example, when constraint is evaluated, the result of this
evaluation is stored into a special data structure that keeps track of satisfied and
unsatisfied constraints in this session. Other data structures store descriptions of
service offerings dynamic relationships, the information about what service offering
is used in which session, and the information about what service offerings are active
or deactivated. The provider Web Service uses information from all these data struc-
tures to determine whether deactivation and/or switching of the currently used serv-
ice offering is appropriate and to what replacement service offering to switch the
affected consumers. Other management parties can also keep some of these data
structures, such as the one storing what service offering is used in a particular ses-
sion. Some other data structures are characteristic for accounting parties, although
the provider and consumer can also implement them. For example, accounting par-
ties can keep a billing balance as the sum of all prices and penalties that have to be
paid. They can also keep history of prices and monetary penalties incurred in a par-
ticular session.

The algorithms for the manipulation of service offerings contain program logic
deciding whether, what, how, and when the manipulation of service offerings should
be performed. They use the data structures discussed above. For example, the algo-
rithm for deactivation of service offerings first checks the history of unsatisfied and
satisfied constraints to determine whether deactivation is appropriate. Then, it uses
several data structures discussed in the previous paragraph to determine to which
service offering to switch. Next, it invokes the algorithm and protocol for the pro-
vider-initiated switching of service offerings for affected consumers. Further, it han-
dles eventual special cases, such as the possibility that some consumers reject the
suggested replacement service offering. After all these activities are performed, this
algorithm invokes the algorithm for deactivation of affected service offerings dy-
namic relationships.

The protocols for the manipulation of service offerings deal with the coordination
of management parties to achieve the manipulation. For example, consumer-initiated

switching of service offerings shown in Figure 4 uses one such a protocol to coordi-
nate the consumer, the provider, and the accounting party.

The majority of algorithms and protocols for the manipulation of service offerings
are relevant for provider Web Services. However, consumers can also implement
some algorithms and protocols, e.g., related to consumer-initiated switching of serv-
ice offerings. If the used accounting party is third-party, it also participates in the
switching of service offerings, both provider- and consumer-initiated. Consequently,
it has to support the protocols used for switching. In addition, provider Web Services
can outsource the decision-making related to the dynamic adaptation mechanisms to
some external Web Service Composition Management entities. If such an entity is
used, it has to implement relevant dynamic adaptation algorithms and protocols. In
our research, we are interested in management activities without human interven-
tion. Therefore, we want to implement all relevant decisions inside our dynamic
adaptation algorithms and protocols. However, we leave the possibility that humans
are consulted in some exceptional cases.

The operations used for monitoring and manipulation of service offerings are ex-
posed to external entities through special management ports. For example, a provider
Web Service can support the special operation for consumer-initiated switching of
service offerings. We have defined several WSDL port types for the monitoring and
manipulation of WSOL service offerings, as well as signatures of operations in these
port types. Most of these port types can be implemented by provider Web Services,
while some port types are also for other management parties. However, a WSOL-
enabled Web Service (e.g., acting as a provider) might support only some of these
port types and/or only some operations within a particular port type. Due to security
reasons, only selected entities outside the Web Services implementing these port
types are allowed to invoke these management operations. For example, only the
consumer or the accounting party is allowed to invoke the provider operation
‘switchSO’ used in the scenario from Figure 4. Since Web Services define only end-
points and not their implementation, different Web Services (e.g., hosted by the same
SOAP engine) implementing the same port type can also share the actual implemen-
tation of the operations in this port type. This reduces the overhead of supporting
these port types. The advantage of defining management port types instead of sepa-
rate management Web Services is easier discovery.

Let us now provide an overview of the port types we have defined:
First, the ServiceOfferingsInformation port type contains operations that provide

information about available service offerings. It should be implemented by a provider
Web Service. If a special independent broker Web Services is used to find, compare,
and select service offerings, it can also implement some of these operations. A very
important example of operations from this port type is a group of several similar
operations that return information about active service offerings that a consumer is
allowed to use and can choose from. Some of these operations return a WSOL file
with descriptions of service offerings, while some return a URI (Uniform Resource
Identifier) to such a WSOL file. These operations are particularly useful at the be-
ginning of a session between the consumer and the provider Web Service. Similarly,
this port type contains operations that return information (e.g., a WSOL file or a URI

to it) about relevant service offerings dynamic relationships. Another example is the
group of operations that return up-to-date information what service offerings are
active or deactivated.

Second, the ServiceOfferingsManagement-Provider port type contains operations
used by a provider Web Service to initiate or participate in the discussed mechanisms
for the manipulation of service offerings. An example is the operation ‘switchSO’
used in the scenario from Figure 4. Additionally, it contains an operation used at the
beginning of a session to choose one service offering from the list of available service
offerings. The program logic for this operation is similar to (but significantly simpler
than) to the logic for switching of service offerings. Operations for opening and
closing sessions between the consumer and the provider can be part of this port type
or another management port type with operations for session management.

Third, ServiceOfferingsManagement-Consumer contains operations used by a
consumer to participate in the discussed mechanisms for the manipulation of service
offerings. An example is the operation that starts the scenario from Figure 4.

Fourth, ServiceOfferingsManagement-AccParty contains operations used by an
accounting party to participate in the manipulation of service offerings. An example
is the operation ‘switchSO’ used in the scenario from Figure 4.

Fifth, ServiceOfferingsManagement-MgmtParty contains operations used by any
party performing monitoring of WSOL service offerings. These operations enable
management parties to participate in the discussed mechanisms for the manipulation
of service offerings. An example is the operation ‘initAndFin’, used in the scenario
from Figure 4. This operation performs initialization of internal activities and data
structures related to the new service offering and finalization of activities and data
structures related to the old service offering.

Sixth, the ServiceOfferingsDynamicRelationshipsManagement port type contains
operations used by a provider Web Service to initiate or participate in the manipula-
tion of service offerings dynamic relationships. An example is the operation ‘deacti-
vateSODR’ that deactivates a particular service offerings dynamic relationship.

Seventh, the ServiceOfferingsNotification port type should be supported by all
parties involved in the monitoring and manipulation of WSOL service offerings.
Operations from this port type are used to exchange WSOL-related management
information, e.g. results of QoS measurements and constraint evaluations, between
management parties. While the majority of WSOL-related management information
is exchanged using SOAP headers, operations for the explicit exchange of this in-
formation are also needed. For example, after a management party measures a peri-
odic QoS metric and/or evaluates a periodic QoS constraint, it can use an operation
from this port type implemented by another management party to inform it about the
results. Providers and consumer can implement another operation that is used by an
independent accounting party to inform about the values of metered or calculated
QoS metrics, evaluated WSOL constraints, and their monetary consequences.

Eight, the ServiceOfferingsSecurity port type contains operations for security
management of service offerings. Only a provider Web Service should implement
this port type. Two examples are the operations for allowing and disallowing particu-

lar consumers or classes of consumer to use certain service offerings. We have left
the study of such security-related issues for future work.

Ninth, ServiceOfferingsComparisons contains operations for determining static
relationships between service offerings. These operations can be implemented by
provider Web Services and/or by special independent brokers used to find, compare,
and select service offerings. For example, one operation checks whether one service
offering is an extension of another service offering. Another operation returns names
of all available service offerings that are extensions of the given service offering. Yet
another operation lists equivalencies and differences between two service offerings.
This port type can contain many other operations.

7 Manipulation of Service Offerings vs. Alternatives

Apart from the above mechanisms based on the manipulation of service offerings,
other approaches to dynamic adaptation of Web Service compositions exist. For
example, many Web Services do not describe any class of service or SLA for their
consumers. When a consumer starts using such a provider Web Service, but deter-
mines that the QoS is not satisfactory, it can stop using this Web Service and search
for another provider Web Service implementing the same WSDL port types. We call
such approach to dynamic adaptation ‘switching between (provider) Web Services’.
A similar approach to dynamic adaptation is ‘re-composition of Web Services’. In
this approach, some entity (e.g., Web Service Composition Management software or
human administrator) manages a Web Service composition. Often, an explicit de-
scription of a Web Service composition in an appropriate language, such as the
Business Process Execution Language for Web Services (BPEL4WS), exists. When
this management entity determines that one Web Service in the composition does not
perform well enough, it breaks down the Web Service composition and creates a new
composition using some replacement Web Service. Switching between Web Services
is a special case of re-composition of Web Services in which the consumer acts as a
management entity. When the consumer and the provider Web Service can negotiate
a custom-made SLA (or a similar contract), dynamic adaptation can be achieved
with the ‘re-negotiation of SLAs’. The creation of a new service offering is a special,
limited, case of the latter approach to dynamic adaptation.

Manipulation of service offerings deals with a limited number of service offerings
and involves communication only with already known provider Web Service and
management third parties. Consequently, it seems as a simpler, faster, and more
lightweight (in terms of less run-time overhead) approach to dynamic adaptation
than re-negotiation of SLAs and re-composition of Web Services. However, to verify
this observation, we have been performing analytical studies and practical experi-
ments involving different dynamic adaptation approaches.

Our analytical studies concentrate on estimating and comparing delays introduced
by different dynamic adaptation mechanisms. We have decided to model delays in-
troduced by dynamic adaptation mechanisms with the number of exchanged SOAP
messages. From our experience, internal operations performed by parties involved in

dynamic adaptation are relatively simple and fast compared to generating, transmit-
ting, and processing of SOAP messages. While the delay of transmitting messages
over the Internet depends on many factors, such as proximity of communicating
nodes, we have assumed that delays for all exchanged SOAP messages are relatively
similar and can be treated as equal. Consequently, we have compared only the num-
ber of SOAP messages exchanged in different dynamic adaptation scenarios.

For example, the scenario shown in Figure 4 introduces the delay of 4 SOAP mes-
sages. If instead of this scenario, C decides to switch to another provider Web Serv-
ice P’, it has to close the session with P and open a new session with P’. In case the
same accounting party is used for both P and P’, the delay introduced by this switch-
ing between Web Services is at least 6 messages. However, the number of exchanged
messages in the latter scenario can be significantly higher, e.g., because selection of
a new service offering from P’ might require additional messages.

We have also generated formulae that determine the number of exchanged SOAP
messages for different dynamic adaptation mechanisms, both those involving ma-
nipulation of classes of service and their alternatives. These formulae take into con-
sideration issues such as the number of management third parties and whether the
old and new service offering use the same accounting party. We have verified these
formulae on a number of example scenarios. These formulae also showed us that the
delay of our dynamic adaptation mechanisms based on the manipulation of service
offerings linearly increases with the number of involved management third parties
and does not depend on the number of supported service offerings.

In addition to analytical studies, we have developed experiments to examine delay
and run-time overhead in comparable scenarios involving our dynamic adaptation
mechanisms and their alternatives. A simple example experiment is explained be-
low. For these experiments, we have set up a test-bed environment with several Web
Service compositions. In this environment, Web Services use Apache Axis executing
over Apache Tomcat and run on different computers in a local laboratory network.
Some of these Web Services support WSOL and WSOI, while some do not. In addi-
tion, we have set up a test UDDI directory for experiments in which discovery of
Web Services is performed dynamically. While we have already completed some
experiments, we are currently performing additional ones. Further, we also plan to
run some experiments for comparing overhead incurred by WSOL and the compet-
ing languages (WSML or WSLA), when used in similar circumstances.

Fig. 5.a. Switching between Web Services Fig. 5.b. Switching between Service Offerings

 SO1

FA1 SN1

SO2

SN2

a)

 SO1

SO2

FA1 SN1

b)

Let us now discuss a simple experiment when a financial analysis (FA) Web Serv-
ices invokes a stock notification (SN) Web Service to find out current values of dif-
ferent stock symbols. In other words, the financial analysis Web Service is a con-
sumer of the stock notification Web Service. In this experiment, all Web Services are
located on the same computer and use Axis extended with WSOI. We will compare
the switching between Web Services with the switching between service offerings.

In the first case, shown in Figure 5.a, there are two stock notification Web Serv-
ices, SN1 and SN2, implementing the same WSDL port type, but using different
service offerings. SN1 uses SO1, while SN2 uses SO2. A financial analysis Web
Service FA1 uses SN1 and its SO1. However, after some time, SO1 is no longer ap-
propriate for FA1. Therefore, FA1 closes the session with SN1 and opens a session
with SN2. After this switching, FA1 continues to use SN2 and its SO2. In reality,
FA1 would use a UDDI directory or WSIL (Web Services Inspection Language) to
find out that SN2 provides SO2. However, in this simple example, we have hard-
coded this information into FA1. This first case represents simple switching between
Web Services.

We compare the above case with the case that uses switching between service of-
ferings, shown in Figure 5.b. In this second case, SN1 provides two service offerings,
SO1 and SO2, and FA1 first uses SN1 with SO1. FA1, SO1, SO2, and the WSDL
description of SN1 are the same as in the first case. When the need for dynamic ad-
aptation arises, FA1 switches from using SO1 to using SO2 without closing the ses-
sion with SN1. After the switching, FA1 uses SN1 and its SO2.

After conducting this experiment a number of times and averaging the results, we
have concluded that in this simple experiment the switching between service offer-
ings is about 18% faster than the switching between Web Services. It also consumes
less memory (about 4% of the total memory consumed by Tomcat, Axis, WSOI, and
Java implementations of the involved Web Services). In more complex experiments,
when Web Services execute on different computers and/or switching between Web
Services requires access to a UDDI directory, the advantages of dynamic adaptation
mechanisms based on the manipulation of service offerings are significantly greater.

Our analytical studies and practical experiments support our initial observation
that manipulation of service offerings is simpler, faster, and incurs less overhead
than the re-composition of Web Services and the re-negotiation of SLAs. In addition,
it provides additional flexibility and enhances robustness of the relationship between

a provider Web Service and its consumer. This robustness is important when the
consumer trusts the current provider, but does not yet trust alternative providers.

However, compared to the re-composition of Web Services, manipulation of serv-
ice offerings has limitations. Service offerings of one Web Service differ only in
constraints and management statements, which might not be enough for adaptation.
Further, appropriate alternative service offerings cannot always be found or created.
Therefore, manipulation of service offerings is a complement to, and not a complete
replacement for, the re-composition of Web Services. On the contrary, it can be ei-
ther a complement to or a lightweight replacement for the re-negotiation of SLAs,
because they have similar limitations.

Consequently, we suggest that a management system for dynamic adaptation of
Web Service compositions integrates the manipulation of service offerings and the
re-composition of Web Services. When a need for dynamic adaptation arises, such
system would first try to find a replacement service offering from the same provider
Web Service. Only when this is not possible, the system would try to find a replace-
ment provider Web Service and perform re-composition. In some cases (e.g., to
achieve uninterrupted service), the used provider Web Service could supply a tempo-
rary replacement service offering while the consumer searches for another, more
appropriate, Web Service. Other approaches to dynamic adaptation, such as re-
negotiation of SLAs, could also be integrated into such management system to ad-
dress cases when they are appropriate. A possible approach to classification and
integration of different approaches to dynamic adaptation of distributed component
compositions (including Web Service compositions) are discussed in [14].

8 Related Work

Our work on WSOL draws from the considerable previous work on differentiated
classes of service and formal representation of various constraints in other areas,
such as [15-19]. We were also influenced by works on run-time software evolution,
such as [20], although we do not research architecture-based adaptation. At the be-
ginning of our research, there was no relevant work of this kind for Web Services. In
parallel with our research, several related works emerged.

The most important related works are the two recent languages for the formal
XML-based specification of custom-made SLAs for Web Service: the Web Service
Level Agreements (WSLA) [4, 6] from IBM and the HP work on the formal speci-
fication of Web Service SLAs [3, 5]. The latter work seems to be part of the HP’s
Web Service Management Language (WSML). SLAs in these two languages con-
tain QoS constraints and management information, e.g., prices. Both WSLA and
WSML are oriented towards management applications in inter-enterprise scenarios.
These languages specify more detail for QoS constraints than WSOL and specify
custom-made SLAs, not classes of service. In these aspects, they are more powerful
than WSOL. It seems that this results in higher run-time overhead than the overhead
of the simpler WSOL. On the other hand, WSOL also has advantages. In addition to
QoS constraints and price/penalty statements, it enables formal specification of func-

tional constraints, access rights, various reusability constructs, and service offerings
dynamic relationships. It is can be extended with support for additional types of
constraint and management statement. Both WSLA and WSML are accompanied by
appropriate management infrastructures [5, 6]. These infrastructures are more pow-
erful, but also more complex, than WSOI. However, only WSOI contains built-in
support for the dynamic adaptation mechanism based on the manipulation of service
offerings. To conclude, while both WSLA and WSML are very good languages with
adequate management infrastructures, they do not address all the issues that WSOL
and WSOI do. The simpler and more lightweight WSOL and WSOI might be a bet-
ter choice for Web Services for which additional run-time overhead is an important
issue. Web Services in mobile and ubiquitous computing are one example.

Another recent related work is WS-Policy [21] – a general framework for the
specification of policies for Web Services. A policy can be any property of a Web
Service or its parts, so it corresponds to WSOL concepts of a constraint and a man-
agement statement. WS-Policy is only a general framework, while the details of the
specification of particular categories of policies will be defined in specialized lan-
guages. The only such specialized language currently developed is WS-
SecurityPolicy. WS-PolicyAssertions can be used for the formal specification of func-
tional constraints, but the contained expressions can be specified in any language. It
is not clear whether and when some specialized languages for the specification of
QoS policies, prices/penalties, and other management issues will be developed. An-
other set of issues is where, when, and how are WS-Policy policies monitored and
evaluated. WS-Policy has a number of good features, such as flexibility, extensibility,
and reusability. However, it does not have the concept of a class of service nor the
support for specification, monitoring, and manipulation of classes of service. Some
other advantages of our research are specification of static and dynamic relationships
between classes of service, explicit support for management applications in WSOI
and WSOL, formal specification of various constraints and management statements,
unified representation of expressions, and wider range of reusability constructs.

Apart from these recent works that are closely related to and partially competing
with WSOL and WSOI, there are several other resent works that recognize the im-
portance of the formal specification of various constraints, SLAs, and contracts for
Web Services and special types of Web Service. The DAML-S (DAML-Services)
[22] community works on semantic descriptions of Web Services, including specifi-
cation of some functional and some QoS constraints. However, these specifications
are not precise and detailed enough to be usable for the actual monitoring and man-
agement activities. The OGSA (Open Grid Services Architecture) [23] community
also recognizes the need for formal specification of constraints, SLAs, and contracts.
However, a Grid Service is a very special Web Service and it is still not clear how the
future results from the OGSA community will relate to general Web Services. The
notion of WSEL (Web Services Endpoint Language) has been mentioned in the lit-
erature [24], but with no detailed publication to date. One of the goals stated for
WSEL was the specification of some constraints, including QoS, for Web Services.
In addition, several research projects related to the specification and/or management
of QoS for Web Service have been started recently.

In summary, our work on WSOL and WSOI is the only one that provides detailed
support for the specification, monitoring, and manipulation of classes of service for
Web Services. Compared with the related languages, WSOL has advantages in ex-
pressive power, lower run-time overhead, and support for management applications
[8].

9 Conclusions and Future Work

Providing multiple classes of service empowers an XML Web Service to broaden the
range of possible consumers and usage circumstances and to better balance limited
underlying resources and the price/performance ratio. Our Web Service Offerings
Language (WSOL) and Web Service Offerings Infrastructure (WSOI) enable specifi-
cation, monitoring, and manipulation of classes of service for Web Services to the
extent that is not provided by related works.

As part of WSOI, we have developed support for switching, deactivation,
reactivation, deletion, and creation of service offerings. This WSOI support contains
appropriate data structures, implementations of algorithms and protocols, and special
management port types. It complements the WSOL support consisting of explicit
specification of various static and dynamic relationships between service offerings.

We have performed analytical studies and practical experiments to compare these
dynamic adaptation mechanisms with alternatives, such as re-composition of Web
Services. These studies have supported the observation that manipulation of service
offerings is simpler, faster, and more lightweight approach to dynamic adaptation
than re-composition of Web Services and re-negotiation of SLAs. In addition, these
dynamic adaptation mechanisms provide additional flexibility and enhance robust-
ness of the relationship between a provider Web Service and its consumer. The main
limitation of these mechanisms is the fact that appropriate replacement service offer-
ings cannot be always found or created dynamically. Therefore, a Web Service Com-
position Management system should combine manipulation of service offerings with
more powerful dynamic adaptation approaches.

While we have designed and partially implemented the main parts of WSOI, we
still have to implement some parts of the prototype and maybe to extend and improve
its design in some aspects. For example, we are still working on support for deactiva-
tion, reactivation, deletion, and creation of service offerings dynamic relationships.
Likewise, we currently have only rudimentary support for creation of service offer-
ings. We are currently conducting additional analytical studies and experiments with
the manipulation of service offerings, and WSOI in general. For example, we plan
experiments comparing WSOL and languages using custom-made SLAs. We want to
more precisely determine benefits, usability, and limits of our work.

While WSOL is relatively complete and stable, we also have some items for future
work in this area. The major one is the full implementation of a WSOL compiler.
Likewise, a Java API for the generation of WSOL files would be beneficial. In addi-
tion, we have not yet addressed security issues and integration of WSOL files into
UDDI directories. Related to the latter issue of discovery, we believe that WSOL

static and dynamic relationships between service offerings can be very useful for
comparing similar service offerings and Web Services in the process of their negotia-
tion and selection. However, we still have to research this area.

Let us finish the paper with a discussion of possible wider implications of our re-
search. Several authors (e.g., [25]) have predicted that a future distributed computing
platform will integrate and extend technologies currently developed for Web Serv-
ices, Grid Computing, the Semantic Web, Peer-to-Peer (P2) systems, pervasive com-
puting, and mobile computing. We believe that in such environment the importance
of classes of service for Web Services and the mechanisms for their manipulation
will increase. In the Open Grid Services Architecture, Web Services are used not
only for representing software, but also as abstractions for hardware and communica-
tion resources. For such “implementations” of Web Services, issues related to QoS,
access rights, prices and penalties, resource utilization, and price/performance ratio
can be very significant. Since we have suggested definition of QoS metrics in ontolo-
gies that are outside particular WSOL service offerings, we also see our work as
compatible with Semantic Web technologies. Further, Web Services with classes of
service can form peer-to-peer networks. In such a case, manipulation of service offer-
ings enables managing their compositions without an external Web Service Compo-
sition Management entity and even without explicit descriptions of Web Service
compositions. Since classes of service are a lightweight approach to customization of
service and QoS and the manipulation of service offerings is a lightweight approach
to dynamic adaptation, we see them as suitable for resource-constrained devices in
pervasive and mobile computing. In addition, manipulation of service offerings can
be used for handling temporary disturbances, which might occur relatively often in
mobile computing.

References

1. World Wide Web Consortium (W3C): Web Services Description Requirements. W3C
Working Draft 28 October 2002. On-line at: http://www.w3.org/TR/2002/WD-ws-desc-
reqs-20021028/ (2002)

2. Tosic, V., Pagurek, B., Patel, K.: WSOL – A Language for the Formal Specification of
Various Constraints and Classes of Service for Web Services. Res. Rep. OCIECE-02-06.
Ottawa-Carleton Institute for Electrical and Computer Engineering. Nov. 15, 2002. On-line
at: http://www.sce.carleton.ca/netmanage/papers/TosicEtAlResRepNov2002.pdf (2002)

3. Sahai, A., Durante, A., Machiraju, V.: Towards Automated SLA Management for Web
Services. Research Report HPL-2001-310 (R.1), Hewlett-Packard (HP) Laboratories Palo
Alto. July 26, 2002. On-line at: http://www.hpl.hp.com/techreports/2001/HPL-2001-
310R1.pdf (2002)

4. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management, Vol. 11, No
1 (Mar. 2003) Plenum Publishing (2003)

5. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated SLA Monitor-
ing for Web Services. In Proc. of the 13th IFIP/IEEE International Workshop on Distrib-

uted Systems: Operations and Management, DSOM 2002 (Montreal, Canada, Oct. 2002).
Lecture Notes in Computer Science (LNCS), No. 2506. Springer-Verlag (2002) 28-41

6. Dan, A., Franck, R., Keller, A., King, R., Ludwig, H.: Web Service Level Agreement
(WSLA) Language Specification. In Documentation for the Web Services Toolkit, Version
3.2.1. Aug. 9, 2002. International Business Machines Corporation (IBM) (2002)

7. Tosic, V., Pagurek, B., Patel, K.: WSOL – A Language for the Formal Specification of
Various Constraints and Classes of Service for Web Services. Res. Rep. OCIECE-02-06.
Ottawa-Carleton Institute for Electrical and Computer Engineering. Nov. 15, 2002. On-line
at: http://www.sce.carleton.ca/netmanage/papers/TosicEtAlResRepNov2002.pdf (2002)

8. Tosic, V., Patel, K., Pagurek, B.: WSOL – A Language for the Formal Specification of
Classes of Service for Web Services. To be publ. in Proc. of ICWS’03 - The First Interna-
tional Conference on Web Services (Las Vegas, USA, June 2003)

9. Tosic, V., Pagurek, B., Patel, B. Esfandiari, B., Ma, W.: Management Applications of the
Web Service Offerings Language (WSOL). To be publ. in Proc. of the 15th Conference On
Advanced Information Systems Engineering - CAiSE’03 (Velden, Austria, June 2003).
Springer-Verlag, Lecture Notes in Computer Science (LNCS)

10.Patel, K.: XML Grammar and Parser for the Web Service Offerings Language. M.A.Sc.
thesis, Carleton University, Ottawa, Canada. Jan. 30, 2003. On-line at:
http://www.sce.carleton.ca/netmanage/papers/KrutiPatelThesisFinal.pdf (2003)

11.Tosic, V., Esfandiari, B., Pagurek, B., Patel, K.: On Requirements for Ontologies in Man-
agement of Web Services. In Proc. of the Workshop on Web Services, e-Business, and the
Semantic Web – WES at CAiSE’02 (Toronto, Canada, May 2002). Lecture Notes in Com-
puter Science (LNCS), No. 2512. Springer-Verlag (2002) 237-247

12.Tosic, V., Patel. K., Pagurek, B.: Reusability Constructs in the Web Service Offerings
Language (WSOL). To be publ. in Proc. of the Workshop on Web Services, e-Business,
and the Semantic Web – WES at CAiSE’03 (Velden, Austria, June 2003). Revised ex-
tended version published as: Res. Rep. SCE-03-14, The Department of Systems and Com-
puter Engineering, Carleton University, Ottawa, Canada. May 2003. On-line at:
http://www.sce.carleton.ca/netmanage/papers/TosicEtAlRepMay2003.pdf (2003)

13.The Axis Development Team: Axis Architecture Guide, Version 1.0. Apache Axis WWW
page. On-line at: http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-
axis/java/docs/architecture-guide.html (2003)

14.Tosic, V., Pagurek, B., Esfandiari, B., Patel, K.: On Various Approaches to Dynamic Ad-
aptation of Distributed Component Compositions. Res. Rep. OCIECE-02-02. Ottawa-
Carleton Institute for Electrical and Computer Engineering (OCIECE). June 2002. On-line
at: http://www.sce.carleton.ca/netmanage/papers/TosicEtAlResRepJune2002.pdf (2002)

15.Aimoto, T., Miyake, S.: Overview of DiffServ Technology: Its Mechanisms and Implemen-
tation. IEICE Trans. Inf. & Syst., Vol. E83-D, No. 5 (May 2000) IEICE (2000) 957-964

16.Kristiansen L.: (ed.) Service Architecture, Version 5.0. TINA-C (Telecommunications
Information Networking Architecture Consortium) specification. (June 16, 1997) On-line:
http://www.tinac.com/specifications/documents/sa50-main.pdf (1997)

17.Beugnard, A., Jezequel, J.-M., Plouzeau, N., Watkins, D.: Making Components Contract
Aware. Computer, Vol. 32, No. 7 (July 1999) IEEE (1999) 38-45

18.Mckee, P., Marshall, I.: Behavioural Specification using XML. In Proc. of the 7th IEEE
Workshop on Future Trends of Distributed Computing Systems - FTDCS’99, (Cape Town,
South Africa, Dec. 1999) IEEE Computer Society Press (1999) 53-59

19.Jacobsen, H.-A., Karamer, B. J.: Modeling Interface Definition Language Extensions. In
Proc. Technology of Object-Oriented Languages and Systems - TOOLS Pacific 2000 (Syd-
ney, Australia, November 2000) IEEE Computer Society Press (2000) 241-252

20.Oreizy, P., Medvidovic, N., Taylor, R. N.: Architecture-Based Software Runtime Evolu-
tion. In Proc. of the International Conference on Software Engineering 1998 - ICSE'98
(Kyoto, Japan, Apr. 1998) ACM Press (1998) 177-186

21.Hondo, M., Kaler, C. (eds.): Web Services Policy Framework (WS-Policy), Version 1.0.
Dec. 18, 2002. BEA/IBM/Microsoft/SAP. On-line at:
ftp://www6.software.ibm.com/software/developer/library/ws-policy.pdf (2002)

22.The DAML Services Coalition: DAML-S: Semantic Markup for Web Services. WWW
page for DAML-S version 0.7. Oct. 2, 2002. On-line at:
http://www.daml.org/services/daml-s/0.7/daml-s.html (2002)

23.Foster, I., Keselman, C., Nick, J. M., Tuecke, S.: Grid Services for Distributed Systems
Integration. Computer, Vol. 35, No. 6 (June 2002) IEEE –CS (2002) 37-46

24.Ferguson, D. F.: Web Services Architecture: Direction and Position Paper. In Proc. of the
W3C Workshop on Web Services – WSWS’01 (San Jose, USA, Apr. 2001) W3C. On-line
at: http://www.w3c.org/2001/03/WSWS-popa/paper44 (2001)

25.Milenkovic, M., Robinson, S. H., Knauerhase, R. C., Barkai, D., Garg, S., Tewari, V.,
Anderson, T. A., Bowman, M.: Toward Internet Distributed Computing. Computer, Vol.
36, No. 5 (May 2003) IEEE –CS (2003) 38-46

